Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806422

RESUMO

Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins. Furthermore, the bioenergetic response to iron in obese ATMs was hampered. ATMs from iron-injected lean mice increased their glycolytic and respiratory capacities, thus maintaining metabolic flexibility, while ATMs from obese mice did not. Using an isotope-based system, we found that iron exchange between BMDMs and adipocytes was regulated by macrophage phenotype. At the end of the co-culture, MMe macrophages transferred and received more iron from adipocytes than M0, M1, and M2 macrophages. This culminated in a decrease in total iron in MMe macrophages and an increase in total iron in adipocytes compared with M2 macrophages. Taken together, in the MMe condition, the redistribution of iron is biased toward macrophage iron deficiency and simultaneous adipocyte iron overload. These data suggest that obesity changes the communication of iron between adipocytes and macrophages and that rectifying this iron communication channel may be a novel therapeutic target to alleviate insulin resistance.


Assuntos
Resistência à Insulina , Sobrecarga de Ferro , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Fenótipo
2.
Immunometabolism ; 2(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133674

RESUMO

Low-grade chronic adipose tissue (AT) inflammation is now recognized as a pivotal driver of the multi-organ dysfunction associated with obesity-related complications; and adipose tissue macrophages (ATMs) are key to the development of this inflammatory milieu. Along with their role in immunosurveillance, ATMs are central regulators of AT iron homeostasis. Under optimal conditions, ATMs maintain a proper homeostatic balance of iron in adipocytes; however, during obesity, this relationship is altered, and iron is repartitioned into adipocytes as opposed to ATMs. This adipocyte iron overload leads to systemic IR and the mechanism for these effects is still under investigation. Here, we comment on the most recent findings addressing the interplay between adipocyte and ATM iron handling, and metabolic dysfunction.

3.
Diabetes ; 67(11): 2361-2376, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30181158

RESUMO

Adipose tissue (AT) CD4+ and CD8+ T cells contribute to obesity-associated insulin resistance. Prior studies identified conserved T-cell receptor (TCR) chain families in obese AT, but the presence and clonal expansion of specific TCR sequences in obesity has not been assessed. We characterized AT and liver CD8+ and CD4+ TCR repertoires of mice fed a low-fat diet (LFD) and high-fat diet (HFD) using deep sequencing of the TCRß chain to quantify clonal expansion, gene usage, and CDR3 sequence. In AT CD8+ T cells, HFD reduced TCR diversity, increased the prevalence of public TCR clonotypes, and selected for TCR CDR3 regions enriched in positively charged and less polarized amino acids. Although TCR repertoire alone could distinguish between LFD- and HFD-fed mice, these properties of the CDR3 region of AT CD8+ T cells from HFD-fed mice led us to examine the role of negatively charged and nonpolar isolevuglandin (isoLG) adduct-containing antigen-presenting cells within AT. IsoLG-adducted protein species were significantly higher in AT macrophages of HFD-fed mice; isoLGs were elevated in M2-polarized macrophages, promoting CD8+ T-cell activation. Our findings demonstrate that clonal TCR expansion that favors positively charged CDR3s accompanies HFD-induced obesity, which may be an antigen-driven response to isoLG accumulation in macrophages.


Assuntos
Tecido Adiposo/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Regiões Determinantes de Complementaridade/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Prostaglandinas/metabolismo , Tecido Adiposo/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Resistência à Insulina , Fígado/imunologia , Masculino , Camundongos , Obesidade/imunologia
4.
Diabetes ; 63(12): 4057-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25008183

RESUMO

Fibroblast growth factor (FGF)21 is an endocrine hormone that is expressed in multiple tissues and functions physiologically to maintain energy homeostasis. FGF21 is being pursued as a therapeutic target for diabetes and obesity because of its rapid and potent effects on improving insulin sensitivity. However, whether FGF21 enhances insulin sensitivity under physiologic conditions remains unclear. Here, we show that liver-derived FGF21 enters the circulation during fasting but also remains present and functional during the early stage of refeeding. After a prolonged fast, FGF21 acts as an insulin sensitizer to overcome the peripheral insulin resistance induced by fasting, thereby maximizing glucose uptake. Likewise, FGF21 is produced from the liver during overfeeding and mitigates peripheral insulin resistance. DIO FGF21 liver-specific knockout, but not FGF21 adipose-specific knockout, mice have increased insulin resistance and decreased brown adipose tissue-mediated glucose disposal. These data are compatible with the concept that FGF21 functions physiologically as an insulin sensitizer under conditions of acute refeeding and overfeeding.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina/genética , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...